
(d) Find the radius of curvarture of the curvey $y=x e^{-x}$ at the point where y is maximum.
(e) If $f(x+y)=f(x) \cdot f(y), f^{\prime}(0)=3, f(5)=2$, find $f^{\prime}(5)$. $4 \times 5=20$
2. (a) If $f(x)=\tan x$, then show that $f^{n}(0)-n_{C_{2}} f^{n-2}(0)+n_{C_{4}} f^{n-4}(0)-\ldots=\sin \frac{n \pi}{2}$
(b) If $u=f(x, y)$ and $x=r \cos \theta, y=r \sin \theta$, then prove that

$$
\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}=\left(\frac{\partial u}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial u}{\partial \theta}\right)^{2}
$$

3. (a) If $l x+m y=1$ is a normal of the parabola $y^{2}=4 a x$, then show that $a l^{3}+2 a l m^{2}=m^{2}$.
(b) Find the value of a, so that $\lim _{x \rightarrow 0} \frac{a \sin x-\sin 2 x}{\tan ^{3} x}$ exists finitely and find the limit. $10+10$
4. (a) A function $f:[0,1]$ is continuous on $[0,1]$. Prove that there exists a point c in $[0,1]$ such that $f(c)=c$.
(b) Using mean value theorem show that $0<\frac{1}{x} \log \left(\frac{e^{x}-1}{x}\right)<1$, for $x>0$.
5. (a) If p_{1}, p_{2} be the radii of curvarture at the extremities of any chord of the cardioid $r=a(1+\cos \theta)$, which passes through the pole, then prove that $p_{1}^{2}+p_{2}^{2}=\frac{16 a^{2}}{9}$.
(b) Find the infinite series expansion of the function $\sin x, x \in \mathbb{R}$.
6. (a) Show that $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0 \quad, & (x, y)=(0,0)\end{array}\right.$ has partical derivatives but is not continuous at $(0,0)$.
(b) If the normal to the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ makes an angel ϕ with the axis of x, show that its equation is $y \cos \phi-x \sin \phi=a \cos 2 \phi$.
